首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   32篇
  国内免费   178篇
地质学   21篇
海洋学   316篇
综合类   1篇
自然地理   5篇
  2024年   2篇
  2023年   34篇
  2022年   37篇
  2021年   44篇
  2020年   53篇
  2019年   54篇
  2018年   53篇
  2017年   33篇
  2016年   32篇
  2015年   1篇
排序方式: 共有343条查询结果,搜索用时 250 毫秒
11.
12.
海洋生态环境目前正在承受来自人类活动和气候变化的巨大压力;急需必要的管理工具或决策支持系统来应对这些压力所带来的生态环境问题。对海洋生境的分类识别是开展生物多样性保护的基础和前提;海洋生态重要区识别作为一种客观、科学和灵活的生境分类评估和选划方法;已被科学界和管理者广泛接受和认可。本文首先介绍了海洋生态重要区的概念内涵以及识别方法的研究进展;给出了海洋生态重要区的定义;之后以黄河口为例;初步建立了针对该区域的生态重要区识别标准和评价方法;对黄河口及邻近海区进行了生态重要性等级划分。本文是对生态重要区识别方法在我国近海的首次应用尝试;研究结果可为我国基于生态系统的海洋管理提供科学方法和工具;也可为其他区域的研究提供借鉴。  相似文献   
13.
建立了利用高效液相色谱-电喷雾离子阱质谱(HPLC-ESI-IT-MS)测定海洋微藻藻粉中8种典型脂溶性毒素的分析方法。藻粉样品经超声细胞破碎后,采用超声波辅助提取法对藻毒素进行提取,用HPLC-ESI-IT-MS多反应离子监测(MRM)模式对各种毒素(包括大田软海绵酸(OA)、鳍藻毒素1(DTX-1)、扇贝毒素2(PTX-2)、虾夷扇贝毒素(YTX)、原多甲藻酸1(AZA1)原多甲藻酸2(AZA2)、罗环内酯毒素(SPX),米氏裸甲藻毒素(GYM))进行测定。8种脂溶性藻毒素均在线性范围内线性关系良好(R2均在0.991以上),检出限均介于0.085~1.315 pg之间,加标回收率在88.5%~111.4%之间,方法重复性相对标准偏差(RSD)在4.82%~10.17%范围。应用该方法对利玛原甲藻干藻粉中的毒素进行了测定,分析结果良好,说明本方法是海洋微藻藻粉中脂溶性藻毒素测定的有效方法。  相似文献   
14.
蛤蜊岗滩涂贝类分布及其与环境因子的关系   总被引:1,自引:0,他引:1  
为探明辽东湾蛤蜊岗潮间带滩涂贝类的物种组成、分布密度和生物量的变化状况,于2011年5月对蛤蜊岗滩涂贝类资源进行了现场调查,采集共获得滩涂贝类16种,其中文蛤、泥螺、四角蛤蜊、托氏琩螺为蛤蜊岗滩涂贝类优势种,青蛤和光滑河蓝蛤为常见种。托氏琩螺的分布密度最高,为83个/m2,四角蛤蜊的平均生物量最大,为178.51 g/m2。蛤蜊岗滩涂贝类的分布呈现从滩涂北部向南部逐渐减少的趋势,滩涂四周的分布密度大于滩涂中间区域。对滩涂贝类分布密度和生物量与底质粒度、有机物含量等环境因子进行相关分析的结果显示:文蛤分布与底质中值粒径呈极显著的负相关性;托氏琩螺分布与底质中有机质含量呈显著的正相关性,而泥螺、四角蛤蜊则与环境因子的关系不显著。调查结果表明,蛤蜊岗滩涂贝类资源丰富,但应加强文蛤自然资源的保护和恢复,同时应加强对托氏琩螺资源的合理开发利用。  相似文献   
15.
为全面了解黄海典型海区微微型浮游植物的季节变化特征,于2009年7月至2010年6月在北黄海獐子岛海域和2010年1~12月在南黄海胶州湾进行逐月调查采样,利用流式细胞仪检测了表层海水中微微型浮游植物(picophytoplankton)的丰度,包括聚球藻(Synechococcus,SYN)和微微型真核浮游植物(picoeukaryotes,PEUK),并分析了其与环境因子的关系。獐子岛海域和胶州湾SYN和PEUK全年广泛分布,獐子岛海域SYN丰度范围在0.05×103~120.00×103cells/mL之间,丰度在秋季最高;胶州湾SYN丰度范围在0.02×103~61.80×103cells/mL之间,丰度在夏季最高。獐子岛海域PEUK丰度范围在0.01×103~18.76×103cells/mL之间,丰度在秋季最高;胶州湾PEUK丰度范围在0.25×103~95.57×103 cells/mL之间,丰度在春季最高。獐子岛海域微微型浮游植物丰度组成以SYN为主;而胶州湾以PEUK为主。PEUK是两海区微微型浮游植物生物量的主要贡献者。相关性分析结果表明,温度是影响两海区SYN丰度季节变化的最主要因素;影响PEUK季节分布的因素不完全一致,獐子岛海域PEUK丰度主要受温度调控;胶州湾PEUK丰度主要受温度和营养盐浓度影响。与已有研究比较,这两个海区的微微型浮游植物生物量对浮游植物生物量的贡献明显高于其他温带沿岸海域,预示微微型浮游植物在獐子岛海域和胶州湾生态系统中的重要作用,值得进一步深入研究。  相似文献   
16.
微塑料在海洋中的污染情况已经受到了人们广泛关注,但其与重金属相互作用产生的潜在生态风险依然需要进一步研究。本文主要综述了海洋中微塑料的来源及海水、沉积物和生物体内微塑料的污染现状,总结了部分海域微塑料上的重金属富集特征,并介绍了部分微塑料对重金属的吸附模型,最后总结分析了微塑料单独及与重金属协同作用对海洋生物的毒性效应。微塑料与重金属相互作用的结果依然存在许多不确定性,对生物体产生的毒性效应是协同、拮抗还是其他交互作用仍需更多的实验研究。本文旨在为评估微塑料与重金属相互作用造成的生态风险提供支撑,并为今后相关研究的开展提供参考。  相似文献   
17.
为了评估一种快速简单用以确定海洋微藻细胞活性的技术,针对船舶压载水中常见的3个门类中11种10~50μm单细胞微藻用中性红(NR)、5-氯甲基荧光素二乙酸酯(CMFDA)、荧光素二乙酸酯(FDA)三种染料进行染色,通过光镜和荧光显微镜对染色结果进行测定。结果表明,NR(中性红)是检测本实验中全部海洋微藻藻株细胞活性的最佳染料,染色最佳浓度为1/10 000,染色时间为30min;5-氯甲基荧光素二乙酸酯(CMFDA)、荧光素二乙酸酯(FDA)和双荧光染色对海洋微藻藻株活细胞着色时间短,染色效果明显,但其应用具有局限性,适用于检测本实验中甲藻门(塔玛亚历山大藻、链状亚历山大藻、微小原甲藻、利玛原甲藻、东海原甲藻、米氏凯伦藻)和绿藻门(青岛大扁藻和杜氏盐藻)的活性,染色最佳浓度为5μmol/L FDA+2.5μmol/L CMFDA,染色时间为10min,但不适用于检测硅藻门的细胞活性。因此,中性红更适合检测船舶压载水中微藻活细胞,根据光镜下微藻细胞着色情况而判断细胞活性。  相似文献   
18.
氧化还原敏感微量元素 Re、Mo 和 U 主要依靠扩散作用通过沉积物—水界面,在不同氧化还原条件下的沉积物中自生富集,Re在轻度还原的次氧化沉积环境中富集,Mo在还原性更强的硫化环境中富集,而 U 具有较宽的富集沉积深度区间。Re、Mo和 U 独特的地球化学行为使其可用于指示海洋环境的氧化还原状态,其在沉积物中的自生富集程度与沉积时所处的氧化还原条件具有良好的相关性:Re、Mo 和 U 在氧化沉积环境(Re/Al<1.3×10-7,Mo/Al<0.4×10-4)和季节性缺氧区覆盖的沉积环境中富集程度较小,在常年性缺氧区覆盖的沉积环境(U/Al>5×10-4,Mo/Al>5×10-4)和硫化沉积环境(Mo/Al>5×10-4)中富集程度较大。除依据其地球化学行为特征和相对富集程度进行定性分析之外,还可以结合元素富集系数(TMEF<1 表示亏损,TMEF>1 表示富集,TMEF  相似文献   
19.
为探析长江口沉积物-水界面砷的迁移转化机制,本文分析了2019年夏季长江口4个站位上覆水和间隙水中总As浓度及形态的剖面变化特征,耦合氧化还原敏感元素(Fe、Mn和S)的剖面变化剖析了沉积物-水界面砷循环的Fe-Mn-S控制机制,同时结合砷相关功能基因探讨了沉积物-水界面砷迁移转化的微生物调控过程,估算了沉积物-水界面总As的扩散通量。结果表明,除A7-4站位外,长江口其他3个站位间隙水总As以As3+为主要存在形态,且总As浓度均在上覆水中为最低值(0.748~1.57 μg·L-1),而在间隙水中随着深度增加而逐渐增加并在6~9 cm深度达到峰值(7.14~26.9 μg·L-1)。间隙水总As及As3+浓度的剖面变化趋势与溶解态Fe2+、Mn2+相似,其均在中间层出现高值,说明沉积物Fe/Mn还原带砷的释放可能是随固相Fe(Ⅲ)或Mn(Ⅳ)的还原而转移到间隙水中的。氧化层和Fe/Mn还原带过渡区间隙水砷浓度与砷异化还原菌功能基因arrAarsC丰度存在对应关系(除A1-3站外),说明砷异化还原菌将溶解As5+或固相As5+还原为溶解As3+可能是该过渡层砷迁移转化的另一重要过程。硫酸盐还原带的间隙水总As和As3+浓度降低,但由于间隙水的低S2-浓度不利于砷硫化物生成,因此深层间隙水砷可能与铁硫矿物结合而被移除。底层环境氧化还原条件是影响沉积物-水界面砷迁移转化的重要因素,随底层水DO浓度的降低,砷迁移转化更倾向于微生物还原控制。长江口沉积物-水界面总As的扩散通量为1.18×10-7~2.07×10-7 μmol·cm-2·s-1,均表现为沉积物间隙水中总As向上覆水释放,即沉积物是研究区域水体总As的来源之一。  相似文献   
20.
本研究分别利用顶空平衡法与qPCR技术测定了2018年春季黄、渤海5个典型站位柱状沉积物中甲烷(CH4)和氧化亚氮(N2O)浓度及产甲烷菌与硫酸盐还原菌功能基因拷贝数,并分析了其与间隙水中相关环境因子的关系。沉积物上方水文条件的差异以及其中复杂的碳氮生物地球化学过程使得CH4和N2O浓度呈现出明显的空间和垂直变化。结果显示,沉积物中CH4浓度为0.23~0.92 μmol·kg-1,N2O浓度为18.90~104.96 nmol·kg-1。总体来说,渤海沉积物中CH4和N2O平均浓度高于黄海。垂向分布上,CH4浓度均随深度增加逐渐升高, $\text{SO}_{4}^{2-}$浓度随深度增加逐渐降低,并与CH4浓度呈镜像关系,产甲烷菌与硫酸盐还原菌的丰度也遵循着同样规律,这表明沉积物中产甲烷作用受$\text{SO}_{4}^{2-}$浓度的抑制。 mcrA基因拷贝数平均值为渤海低于黄海。除3500-7站外,沉积物中mcrA基因拷贝数随深度增加而升高。各站位mcrA 基因丰度与CH4浓度均无显著相关性,且mcrA丰度与$\text{SO}_{4}^{2-}$浓度之间也未检测到显著相关性。dsrB基因拷贝数远高于mcrA基因拷贝数,且两者相差至少两个数量级。 dsrB基因拷贝数随深度逐渐增加,直至10 cm左右,随后至沉积物底部逐渐减少。各站位dsrB基因拷贝数与CH4浓度剖面略有镜像关系,但均未检测到显著负相关性。以上结果均表明沉积物中存在着同时消耗沉积物中$\text{SO}_{4}^{2-}$与CH4的其他作用。N2O浓度随深度增加先降低,在深度30 cm以下逐渐升高。间隙水中$\text{NO}_{3}^{-}$和$\text{NO}_{2}^{-}$浓度均随深度减小,同时$\text{NH}_{4}^{+}$浓度与其呈相反趋势。沉积物中N2O与$\text{NO}_{2}^{-}$及$\text{NO}_{3}^{-}$浓度均呈正相关,且前者相关性较高,说明反硝化作用是沉积物中N2O产生的主要过程。这些结果为进一步了解近岸陆架海域沉积物中CH4和N2O的来源、分布及碳氮生物地球化学循环提供了参考资料。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号